top of page
Sea-Bass-Aquaculture-Feed.jpg

Οι Πηγές του έργου

A.O.A.C., 1990. In: Helvich, K. (1990). Official methods of analysis (No. 630.24 A88 1990). Association of official analytical chemists.

Adeola, O., & Cowieson, A. J. (2011). Board-invited review: opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Journal of animal science, 89(10), 3189-3218.

Aliferis, K. A., Faubert, D., Jabaji, S., 2014. A metabolic profiling strategy for the dissection of plant defense against fungal pathogens. PLoS One 9, e111930

Aliferis, K. A., Chamoun, R., & Jabaji, S. (2015). Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and 1H NMR spectroscopy metabolite profiling. Frontiers in plant science, 6, 344.

Alsersy, H., Salem, A. Z., Borhami, B. E., Olivares, J., Gado, H. M., Mariezcurrena, M. D., & Hernandez, S. R. (2015). Effect of M editerranean saltbush (A triplex halimus) ensilaging with two developed enzyme cocktails on feed intake, nutrient digestibility and ruminal fermentation in sheep. Animal Science Journal, 86(1), 51-58.

AOAC official methods of analysis (18th ed.), AOAC international, Gaithersburg, USA (2012)

Borresen, E., J Henderson, A., Kumar, A., L Weir, T., & P Ryan, E. (2012). Fermented foods: patented approaches and formulations for nutritional supplementation and health promotion. Recent patents on food, nutrition & agriculture, 4(2), 134-140.

Dalsgaard K.E., Bach Knudsen V., Verlhac K.S., and Ekmann, (2016) Supplementing enzymes to extruded, soybean‐based diet improves breakdown of non‐starch polysaccharides in rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 22; 419–426.

Diógenes, A., Carolina Castro, C., Carvalho, M., Magalhães, R., Estevão-Rodrigues, T., Serra, C., Oliva-Teles, A.and Peres, H., (2018). Exogenous enzymes supplementation enhances diet digestibility and digestive function and affects intestinal microbiota of turbot (Scophthalmus maximus) juveniles fed distillers' dried grains with solubles (DDGS) based diets. Aquaculture 486 (2018) 42–50.

Dossou, S., Koshio, S., Ishikawa, M., Yokoyama, S., El Basuini, M., Zaineldin, I., Mzengereza, K., Moss, A., Mahmoud, A.and Dawood, O., (2019). Effects of replacing fishmeal with fermented and non-fermented rapeseed meal on the growth, immune and antioxidant responses of red sea bream (Pagrus major). Aquaculture Nutrition, 25:508–517.

Englyst, H. N., Quigley, M. E., & Hudson, G. J. (1994). Determination of dietary fibre as non-starch polysaccharides with gas–liquid chromatographic, high-performance liquid chromatographic or spectrophotometric measurement of constituent sugars. Analyst, 119(7), 1497-1509.

Euroactiv,(2006).http://www.euractiv.com/en/biotech/genetically-modified-organisms/ article-117498.

FGM, (2018). Federation of Greek Maricultures Annual report.

Francis, G., Makkar, H. P., & Becker, K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199(3-4), 197-227.

Gatlin, D.M., Barrows, F., Brown, P., Dabrowski, K., Gaylord, G., Hardy, R., Hu, G., Krogdahl, A., et al., (2017). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research, Volume 38, issue 6, 551-579

German D.P., Bittong R.A. (2009) Digestive enzyme activities and gastrointestinal fermentation inwood-eating catfishes. J. Comp. Physiol. B 179:1025-1042

Gibson, T. S., Kaldor, C. J., & McCleary, B. V. (1993). Collaborative evaluation of an enzymatic starch damage assay kit. Cereal chemistry, 70, 47-51.

Goda, A., Ahmed, S., Nazmi, H., Baromh, M., Fitzsimmons, K., Rossi, W., Davies, S. and El-Haroun, E., (2020). Partial replacement of dietary soybean meal by high-protein distiller's dried grains (HPDDG) supplemented with protease enzyme for European seabass, Dicentrarchus labrax fingerlings. Aquaculture Nutrition. 020; 00:1–11.

Grain legumes (2006) Grain legumes in EU agriculture. http://www.grainlegumes.com/aep/production/ trends_in_production/ european_production/grain_legumes_in_eu_agriculture.

Henry M., Fountoulaki E., (2014). Optimal dietary protein/lipid ratio for improved immune status of a newly cultivated Mediterranean fish species, the shi drum Umbrina cirrosa, L. Fish and Shellfish Immunology, 37(2): 215-219.

Ηenry Μ.Α., Nikoloudaki C., Tsigenopoulos C., Rigos G., (2015). Strong effect of long-term Sparicotyle chrysophrii infection on the cellular and innate immune responses of Gilthead sea bream, Sparus aurata. Developmental and Comparative Immunology, 51: 185-193.

Ilham, I., Hapsari, F. and Fotedar, R., (2018). Growth, enzymatic glutathione peroxidase activity and biochemical status of juvenile barramundi (Lates calcarifer) fed dietary fermented lupin meal supplemented with organic selenium. Aquaculture Research, 49:151–164.

Jannathulla, R., Dayal, J., Ambasankar, K., Eugine, A., Muralidhar, M., (2018). Fungus, Aspergillus niger, fermented groundnut oil cake as a fishmeal alternative in the diet of Penaeus vannamei. Aquaculture Research, 49:2891–2902.

Kalampokis, I. F., Kapetanakis, G. C., Aliferis, K. A., Diallinas, G., (2018). Multiple nucleobase transporters contribute to boscalid sensitivity in Aspergillus nidulans. Fungal Genet. Biol. 115, 52-63 doi:https://doi.org/10.1016/j.fgb.2018.02.004

Kormas, K. A., Meziti, A., Mente, E., & Frentzos, A. (2014). Dietary differences are reflected on the gut prokaryotic community structure of wild and commercially reared sea bream (Sparus aurata). Microbiologyopen, 3(5), 718-728.

Lykogianni, M., Papadopoulou, E. A., Sapalidis, A., Tsiourvas, D., Sideratou, Z., & Aliferis, K. A. (2020). Metabolomics reveals differential mechanisms of toxicity of hyperbranched poly (ethyleneimine)-derived nanoparticles to the soil-borne fungus Verticillium dahliae Kleb. Pesticide Biochemistry and Physiology.

Okeke, C. A., Ezekiel, C. N., Nwangburuka, C. C., Sulyok, M., Ezeamagu, C. O., Adeleke, R. A., & Krska, R. (2015). Bacterial diversity and mycotoxin reduction during maize fermentation (steeping) for ogi production. Frontiers in microbiology, 6, 1402.

Olukomaiya, O., Fernando. C., Mereddy, R., Li, X. and Sultanbawa, Y., (2019). Solid-state fermented plant protein sources in the diets of broiler chickens: A review. Animal Nutrition 5, 319-330.

Petterson, D. S., & Mackintosh, J. B. (1994). The chemical composition and nutritive value of Australian grain legumes.

Refstie,T., Sahlstrom, S., Brathen, E., Baeverfjord, G., and Krogedal, P., (2005). Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquaculture 246, 331– 345.

Renge, V. C., Khedkar, S. V., & Nandurkar, N. R. (2012). Enzyme synthesis by fermentation method: a review. Sci Rev Chem Comm, 2(4), 585e90.

Roques, S., Deborde, C., Richard, N., Moing, A., Fauconneau, B., (2020). Metabolomics and fish nutrition: A review in the context of sustainable feed development. Reviews in Aquaculture 12, 261-282

Sevastos, A., Kalampokis, I., Panagiotopoulou, A., Pelecanou, M., Aliferis, K., (2018). Implication of Fusarium graminearum primary metabolism in its resistance to benzimidazole fungicides as revealed by 1H NMR metabolomics. Pestic. Biochem. Physiol. 148, 50-61

Shahowna, E. M., Mahala, A. G., Mokhtar, A. M., Amasaib, E. O., & Attaelmnan, B. (2013). Evaluation of nutritive value of sugar cane bagasse fermented with poultry litter as animal feed. Afr J Food Sci Technol, 4, 106e9.

Shen G.; Huang Y.; Dong J.; Wang X.; Cheng K.K.; Feng J.; Xu J.; Ye J.; 2018. Metabolic effect of dietary taurine supplementation on Nile tilapia (Oreochromis nilotictus) evaluated by NMR-based Metabolomics. Journal of Agricultural and Food Chemistry 66(1): 368–377.

Smith, C., Van Megen, W., Twaalfhoven, L., Hitchcock, C., (1980). The determination of trypsin inhibitor levels in foodstuffs. J. Sci. Food Agric. 31, 341–350.

Sulas, L. (2005) The future role of forage legumes in Mediterraneanclimate areas. In: Grasslands: Developments, Opportunities, Perspectives. Reynolds, S. & Frame, J. eds), pp. 29–54. Contributor Stephen Reynolds. Science Publishers, New Hampshire.

Supriyati, T. H., Susanti, T., & Susana, I. W. R. (2015). Nutritional value of rice bran fermented by Bacillus amyloliquefaciens and humic substances and its utilization as a feed ingredient for broiler chickens. Asian-Australasian journal of animal sciences, 28(2), 231.

Tahir, M., Saleh, F., Ohtsuka, A., & Hayashi, K. (2008). An effective combination of carbohydrases that enables reduction of dietary protein in broilers. Poultry science, 87(4), 713-718.

Tibbetts, S. M., Milley, J. E., Ross, N. W., Verreth, J. A. J., & Lall, S. P. (2011). In vitro pH-Stat protein hydrolysis of feed ingredients for Atlantic cod, Gadus morhua. 1. Development of the method. Aquaculture, 319(3-4), 398-406.

Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., & Arita, M. (2015). MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature methods, 12(6), 523-526.

Vaintraub, I.A., Lapteva, N.A., 1988.Colorimetric determination of phytateinun purified extracts of seeds and the products of their processing. Anal.Biochem. 175, 227–230.

Yamamoto, T., Y. Iwashita, H. Matsunari, T. Sugita, A. Akimoto, K. Okamatsu, N. Suzuki., (2010). Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of rainbow trout Oncorhynchus mykiss. Aquaculture, 309, 173–180.

bottom of page